برنارسی ویژگی‌های طیف فرکانس‌سیگال الکترومیوگرافی در طول‌های مختلف
عضله ابداع‌کننده بولیسیس برویس درد و نوع انقباض ایزومتریک و دینامیک

دکتر غلامرضا علی‌یزدی، دکتر محمد‌ندا هادی‌نژاد، دکتر حسین باقری، دکتر سعید طالبیان، محسن عابدی

1. استاد دانشکده توانبخشی، دانشگاه علوم پزشکی تهران
2. دانشجوی دانشکده توانبخشی، دانشگاه علوم پزشکی تهران
3. کارشناس ارشد فیزیوتراپی

چکیده
زمینه و هدف: این پژوهش با هدف بررسی و مقایسه اثرات طول‌های مختلف عضله ابداع‌کننده بولیسیس برویس انقباض ایزومتریک و دینامیک بر تغییرات طیف فرکانس سیگنال الکترومیوگرافی و خصوصیات موضعی عضلانی و همچنین بررسی اثر خستگی عضلانی بر روی طیف فرکانس آست.

روش پژوهشی: در 20 نفر از افراد سالم بین سنین 20 تا 40 سال انجام شد. در این تحقیق حرکت و فرد در مجموع 3 دقیقه انقباض ایزومتریک 1 دقیقه انقباض دینامیک عادی 1 دقیقه انقباض دینامیک سرعتی و 6 دقیقه انقباض دینامیک با فرکانس میدانی که هر کدام از انقباض‌ها در سه طول کوتاه متوسط و بلند (با عبارتی زوال‌ای 100 و 90 درجه) انجام می‌شد. بین هر کدام از مراحل انقباضی مدتد 5 دقیقه زمان استراحت در نظر گرفته می‌شد. و بعد از هر مرحله نیز موج الکترومیوگرافی عضله توسط دستگاه ثبت شده و در نهایت طیف فرکانس آن مورد بررسی قرار می‌گرفت.

یافته‌ها: با استفاده از آزمون آماری تی مشخص گردید که با کاهش طول عضله فرکانس‌های میانی و متغیرین بازیابی می‌پایان (P<0.05). همچنین تست خستگی سبب کاهش شاخص‌های فرکانسی می‌شود که این کاهش در انقباض ایزومتریک کمتر از انقباض دینامیک بود و بیشترین کاهش مربوط به انقباض دینامیک با فرکانس میزان انحراف فرکانس‌های لاحظ عده مربوط به طول کوتاه عضله بود که این باید از انقباض میزان اختلاف میزان نسبت به طول‌های دیگر نشان می‌داد.

نتیجه‌گیری: این پژوهش کلی که این تحقیق ویژگی‌های بین طول عضله و خصوصیات موضعی عضلانی با تغییرات طیف فرکانس است.

واژگان کلیدی: سیگنال الکترومیوگرافی، خصوصیات موضعی عضلانی، طیف فرکانس، انقباض ایزومتریک، انقباض دینامیک

تاریخ پذیرش مقاله: آبان 1385
تاریخ وصول مقاله: شهریور 1385
نوعیت مسئول: استاد گروه آموزشی فیزیوتراپی دانشکده توانبخشی دانشگاه علوم پزشکی تهران

olyaeigh@sina.tums.ac.ir
مقدمه

خستگی عضلانی به شکل‌های مختلفی تعریف شده است. یکی از تعاریف مشهور آن عبارت است از: خستگی عضلانی کاهش در حداقل طرفی تولید نیرو توسط عضله است که اثر ورزش یا فعالیت‌های دنی رخ مدهد (1).

این علائم همراه با خستگی می‌توانند به گرفتگی عضلات، سطفی و درد اشاره کرده. خستگی عضلانی همچنین با کاهش طرفی تولید نیرو کاهش سرعت هدای عضله و کاهش سرعت انتقال泰山ت شدن متابولیت‌ها هر ماه است (2).

یکی از مباحث مهم که به شناخت مکانیزم پیچیده خستگی ورابطه آن با سابی اعمال کمی می‌کند، ایجاد یک روش معنی‌داری که جهت کاهشی واندازه‌گیری خستگی است، تاکنون از روش‌های مقاوتی برای این کار استفاده شده است که هرکدام محاسن و معایب خودداردند (3، 4 و 5).

اگر مسیرهایی از روش تجزیه و تحلیل طیف فرکانسی برای کاربردهای تحقیقی و رای عضلانی مرسم شده است، که در پژوهش حاضر به همین مقرو Nugy پرداخته شد.

روش بررسی

1- منظیرها و جمعیت نمونه

در این مطالعه متعیاری ناه ی مسیرهای مستقل شامل انتقال ایزو ایترینک در طولهای مختلف وهمچنین انتقال‌های دینامیک عادی سرعتی و مقاومی در طولهای مختلف ومنتشره ووابسته شکل‌های از خستگی مخصوص عضلانی و ویژگی‌های طیف فرکانس (فرکانس میانه و منابع).

جمعیت نمونه مورد مطالعه شامل 20 نفر از دانشجویان دانشکده توانبخشی دانشگاه علوم پزشکی تهران بودند که همگی از سلامت کامل برخوردار بوده و بطور داوطلبانه در این تحقیق شرکت کرده‌اند.

2- وسایل و تجهیزات مورد استفاده

دستگاه ثابت و تشخیص الکتریکی (الکترومیوگرافی) با نام DISA مدل 14HOS و سختی توانبخشی دانشگاه علوم پزشکی تهران دوره 1، شماره 1386.
نقته سرعت حرکت خود را با آن تنظیم می‌کرد. در
انقباض دینامیک عادی و مقاومتی این سرعت یکسان
بود و در انقباض سرعتی دو برابر حال قبل می‌شد.
برای انقباض انقباض دینامیک مقاومتی از یک فرآیند
عمل مقاومت در یک حرکت استفاده می‌شد. پس از
ثبت امواج الکتروموگرافی توسط کامپیوتر، کلیه
اطلاعات وارد نرم‌افزار، و سپس تغییر ابزار الکترو
میانه و میانگین بدست می‌آمد که با استفاده از یک
اعداد فرکانسی در مراحل بعدی به بررسی و مقایسه
تغییرات طیف فرکانسی و خستگی عضلانی در حالت‌های
گوناگون پرداخته می‌شد.

۲- روش تحلیل داده‌ها
برای اندازه‌گیری میانگین و انحراف
میانی، مربوط به شاخص‌های الکتروموگرافی
فیلی از نرم‌افزار

SPSS آماری

به‌عنوان نرم‌افزار، الکتروموگرافی

این دستگاه‌ها، با استفاده از آزمون

آماری T тест

در نهایت برای بررسی آماری

مقایسه این سه نوع انقباض دینامیک بر طیف فرکانس

ANOVA و خستگی عضلانی از آزمون

واریانس یکطرفه استفاده شد.

یافته‌ها

برای بررسی یافته‌های حاصل از تحقیق باید سنجش طیف فرکانسی در انقباض ایزومتریک و
سپس در انقباضات دینامیک انجام داده شود. در هر مرحله
این برای بررسی گم وجود با عدم وجود رابطه از
استفاده کرده

آماری واریانس یکطرفه استفاده شد.

وسیب جهت ارزیابی چگونگی وجود رابطه از آزمون

سGD برید.

کارهای مثبت مصرف در شکل شماره یک مشخص

است در یک مقایسه کلی از انقباض‌های مختلف پس از

خاص مربوط به ثبت موی تنظیم شد. انتخاب نوع

انقباض و طول‌های مختلف عمله با شهره تصادفی و

با قید قرعه بود.
الف) نحوه انقباض آزمایشی در انقباض ایزومتریک و

زاویه صفر درجه

اینجا انجام شست می‌باشد.

استفاده از استراک بر روی اسپلین مربوط به زاویه

صرف درجه ثابت نگه داشته شد. فرد انجام شست رادر

جهت ابتدایی و با حداکثر توان می‌کرد حركت داده و

ثابت نه‌دایش (انقباض ایزومتریک) بالاصلی‌سپاس

از شروع انقباض به مدت ۵ ثانیه موی الکتروموگرافی

طی عده می‌شد. فرد فرد را به مدت ۲ دقیقه با انقباض خود ادامه داده و در پایان دوباره به مدت ۵ ثانیه موی الکتروموگرافی

ثبت می‌گردید. پس از پایان هر انقباض فرد به مدت ۵

دقیقه استراحت کرده و سپس همین کار در یک زاویه

دهیک تکرار می‌شد.

جلب حس: در صورتی که در سطح اول، آزمایش‌های

مربوط به انقباض ایزومتریک انجام شده باشد در

جلب حس دوم انقباضات دینامیک انجام می‌گردد و

بالعکس.

ب) نحوه انقباض آزمایش دینامیک

در اینجا نیز پس از طی مرحله مقدماتی

وانتخاب نوع انقباض دینامیک وطلبد مورد نظر

آزمایش شروع می‌شود. مدت انقباض هر کدام از انواع

انقباضات دینامیک ۶ دقیقه بودیدکه با فاصله ۵ دقیقه

استراحت بین آنها انجام می‌گردد. در اینجا نیز در

پایان هر انقباض، به مدت ۵ ثانیه موی

الکتروموگرافی ضعیل به صورت ایزومتریک ثبت می‌شد.

برای مطمئن شدن از نتایب بودن سرعت انقباض

انقباض از برنامه کامپیوتری تراکر (تعقیب کتابی)

استفاده گردید که در آن نقطه ای نوراتی روى صفحه

مانتور با سرعت ثابت حرکت کرده و فرد با تعقیب

تولیدکننده: دانشگاه علوم پزشکی تهران دوره ۱، شماره ۱، ۱۳۸۶. ۲۸
انجام آزمایش خستگی دیده می‌شود که در همه انقباض‌ها با افزایش زاویه (و با عبارتی کوتاه شدن طول عضله) فرکانس میانه افرازیش به دیگر کننده بیشترین افزایش مربوط به زاویه 90 درجه در انقباض دینامیک عادی و کنترل‌های مربوط به زاویه 0 درجه در انقباض ایزومتریک و دینامیک با فن است.

مقایسه فرکانس میانه بعد از تست خستگی شکل (1)

در شکل شماره چهار همین مقایسه برای قیل و بعد از انجام آزمایش خستگی در انقباض دینامیک عادی صورت گرفته است که در اینجا نیز فرکانس‌های میانه و میانگین کاهش معناداری را پس از انجام آزمایش خستگی نسبت به قبل از آن نشان می‌دهد. P=0.001 و P=0.02 به ترتیب برای زاویه 45° و 90 درجه.

مقایسه فرکانس میانه بعد از تست خستگی شکل (2)

در شکل شماره سه مقایسه ای بین فرکانس‌های میانه و میانگین در طول‌های مختلف عضله قیل و بعد از انجام انقباض ایزومتریک صورت گرفته است. در این شکل دیده می‌شود که در هره سه زاویه، فرکانس‌های میانه و میانگین پس از انجام آزمایش خستگی نسبت به قبل از آن کاهش یافته است که از لحاظ آماری این تفاوت معنادار است P=0.000 و

مقایسه فرکانس میانه و میانگین قبل از خستگی شکل (3)
کاهش معناداری را نسبت به قبل از آن نشان می‌دهد و با ترتیب برای زوایای 45 و 90 درجه.

مقایسه فرکانس میانه و میانگین قبل و بعد از تست خستگی (در انقباض دینامیک) شکل (5)

و سرانجام در شکل شماره شش همین مقایسه در انقباض دینامیک مقاویتی صورت گرفته که در نتیجه در اینجا نیز فرکانسها پس از انجام آزمایش خستگی نسبت به قبل از آن کاهش معناداری را نشان می‌دهد و با ترتیب برای زوایای 45 و 90 درجه.

برای بررسی اثر نوع انقباض ایزومتریک و دینامیک عادی بر انصراف طیف فرکانس (خستگی)

موضوعی عضله از آزمون استفاده شد. در جداول شماره بک و دو اثر این دو نوع انقباض بر درصد تغییرات فرکانس‌های میانه و میانگین نشان داده شده است. همانطور که مشاهده می‌شود در هر دو حالت میانگین‌های مربوط به طول‌های مختلف عضله در انقباض دینامیک کاهش معناداری را نسبت به انقباض ایزومتریک نشان می‌دهد.

برای پرسی های طیف فرکانس‌های الکترومیوگرافی در طول‌های مختلف...
جدول (1) اثر دو نوع انتقال ایزومتریک و دینامیک عادی بر کاهش فرکانس

<table>
<thead>
<tr>
<th>P</th>
<th>انقباض دینامیک</th>
<th>انقباض ایزومتریک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>انحراف معیار</td>
<td>میانگین</td>
</tr>
<tr>
<td>0.001</td>
<td>5/5</td>
<td>10/57</td>
</tr>
<tr>
<td>0.000</td>
<td>9/31</td>
<td>16/77</td>
</tr>
<tr>
<td>0.000</td>
<td>9/95</td>
<td>16/77</td>
</tr>
</tbody>
</table>

درصد تغییرات فرکانس
- میانگین در زاویه 0 درجه
- میانگین در زاویه 45 درجه
- میانگین در زاویه 90 درجه

جدول (2) اثر دو نوع انتقال ایزومتریک و دینامیک عادی بر کاهش فرکانس

<table>
<thead>
<tr>
<th>P</th>
<th>انقباض دینامیک</th>
<th>انقباض ایزومتریک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>انحراف معیار</td>
<td>میانگین</td>
</tr>
<tr>
<td>0.001</td>
<td>5/90</td>
<td>14/83</td>
</tr>
<tr>
<td>0.000</td>
<td>16/49</td>
<td>25/17</td>
</tr>
<tr>
<td>0.000</td>
<td>16/53</td>
<td>27/22</td>
</tr>
</tbody>
</table>

درصد تغییرات
- فرکانس میانه در زاویه 0 درجه
- فرکانس میانه در زاویه 45 درجه
- فرکانس میانه در زاویه 90 درجه

بطور کلی از مجموع یافته‌های پایین نتایج زیر بررسی

1- می‌آید: قبل از انجام آزمایش خستگی، رابطه معناداری بین طول عضله و فرکانس‌های میانگین وجود دارد که این رابطه بر عکس می‌باشد. همچنین چه طول کاهش یابد. فرکانس بهتر می‌شود.
2- در انتقال ایزومتریک، فرکانس‌های میانه و میانگی پس از انجام آزمایش خستگی کاهش معناداری دارد که این رابطه بر عکس می‌باشد. همچنین چه طول کاهش یابد. فرکانس بهتر می‌شود.
3- در انتقال ایزومتریک، در طولهای مختلف، تفاوت معناداری را نشان نمی‌دهد.
4- با توجه به کردن اختلاف مقادیر فرکانسی مشخص گردیده درصد تغییرات فرکانس در انتقال ایزومتریک در تمام زوايا بهتر از انقباض دینامیک است.
نتیجه گیری
کاهش فرکانس سیگنال الکتروموگرافی که در این تحقیق مشاهده شد، مکانیزم‌ها با تحقیقاتی است که قبل از این زمینه آنها شده است (7,8,9).

مهم‌ترین افزایش در تغییرات انسحاب
فرکانس در طول‌های کوتاه‌تر که در مطالعات قبلی (6) دیده شده بود. این تغییرات منجر به افزایش (بیش از 50 درصد) در این ارائه میزان انحرافات فرکانس در طول‌های کوتاه و بین مدت‌های نبود که را می‌توان به بهبود کنترل افزایش انحرافات در این تحقیق نسبت داد. در مورد اثر طول عضله بر شاخص‌های فرکانسی نیز به‌عنوان این تحقیقات دیگر مشابه است (10).

مثلاً در اینجا نیز دیده شد که قبل از انجام آزمایش خستگی کاهش فرکانس در طول عضله، فرکانس کاهش می‌یابد. چند میزان کاهش در این تحقیق در حدود 8 درصد بود در حالیکه در تحقیق دیگری (9) این میزان 18 درصد گزارش شده است. این نتایج در مورد به اختلاف نوع عضله و روش انجام آزمایش است.

در پژوهش‌های قبلی کاهش فرکانس کاهش افت‌یافته فیبر عضلانی اثر‌گذار، به‌طور کلی توزیع فیبر عضلانی در سطحی سرعت های فیبر عضلانی اثر می‌گذارد. طولیکه افزایش قطع سبب افزایش در سرعت نیز می‌شود. رابطه بین سرعت و طیف فرکانس نیز با مدل‌های ریاضی و تئوری‌های تجربی نشان داده شده است (10). بنابراین یکی از علل کاهش فرکانس (میانگین و راهکار) که به عنوان افزایش طول عضله رخ می‌دهد این است که وقتی عضله طولی می‌شود سرعت های فیبر عضلانی کم شده و منجر به کاهش فرکانس می‌گردد. علاوه بر اثر قطع فیبر عضله سرعت های افزایش، عامل دیگر مقاومت حجم مایع خارج سلولی است. افزایش در طول عضله.

توضیحات
۱. توانایی نوین - دانشکده توانبخشی - دانشگاه علوم پزشکی تهران دوره 1، شماره 9، 1386
یک مورد گزارش شده است که خستگی عضلانی در طول‌های بلند بیشتر از طول‌های کوتاه دیده شده است (۱۶) که علت آن را هم افزایش ایسکمی عضله در طول‌های بلند نکرده‌اند. بنابراین برای شناخت بهتر این پدیده نیاز به تحقیقات و مطالعات بیشتر و کاملتری است.

تشکر و قدردانی:

این طرح با استفاده از بودجه اختصاصی دانشگاه علوم پزشکی تهران انجام پذیرفت. نویسنده لازم می‌داند که از دانشگاه علوم پزشکی تهران برای حمایت مالی از این طرح تحقیقاتی تشکر نماید.
References:


