ارزیابی فانکشنال حس وضعیت مفصل زانو بعد از بازسازی لیگامان متقاطع قدامی

دکتر محمد رضا هادیان۱، سید حسن میر۲، دکتر سعید طالبیان۳، دکتر نسرین ناصری۴
۱دانشیار، دانشکده توانبخشی دانشگاه علوم پزشکی تهران. نویسندگه مسئول
۲کارشناس ارشد فیزیوتراپی، دانشکده توانبخشی دانشگاه علوم پزشکی تهران
۳دانشیار، دانشکده توانبخشی دانشگاه علوم پزشکی تهران
۴استادیار، دانشکده توانبخشی دانشگاه علوم پزشکی تهران

چکیده
زمینه و هدف: لیگامان متقاطع قدامی در زانو دو نقش مکانیکال و حسی دارد. حس عمیق توسط بازسازی وضعیت مفصل و آستانهدرک حركة پایبند در وضعیت بدون تحمیل وزن بازسازی شده است. پیشنهاد شده است که ارزیابی حس عمیق در وضعیت فانکشنال اندام تحتانی ممکن است اثر آسیب و بازسازی لیگامان متقاطع قدامی را بر عملکرد حس عمیق زانو بهتر نشان دهد.

هدف مطالعه حاضر ارزیابی حس وضعیت مفصل زانو بعد از بازسازی لیگامان متقاطع قدامی در وضعیت فانکشنال بود.

روش بررسی: ۱۲ بیمار که تحت عمل بازسازی لیگامان متقاطع قدامی قرار گرفته بودند و ۱۲ فرد سالم در این مطالعه شرکت کردند. حس وضعیت مفصل در زانوی غلاف افراد سالم و زانوی عمل شده و زانوی سالم بیماران از طریق بازسازی زاوهی تست شده مورد ارزیابی قرار گرفت. برای اдаетه گیری زاوهی از سیستم متشکل از فتووگرافی ديجیتال. مارکرهای غیر منعکس کننده و آنالیز با استفاده Sh. ارزیابی در دو وضعیت حركة در چش اکستنشیون و حركة در چش گلفسبون صورت گرفت.

خلاصه مطالعه: غلاف افراد سالم و زانوی عملی در حس وضعیت مفصل بیشتر بهبود نشان داد و بازسازی لیگامان متقاطع قدامی در وضعیت حس عمیق زانو بهبود یافت.

یافته ها: نتایج مطالعه نشان داد که وضعیت فعلی بخشی از ظرفیت حس عمیق مفصل زانوی طبیعی مانند حس چشمی است و حس عمیق زانو از طریق بازسازی لیگامان متقاطع قدامی بهبود یافت.

نتیجه گیری: نتایج حاصل از این تحقیق نشان داد که تحت عمل بازسازی لیگامان متقاطع قدامی قرار گرفت اند در وضعیت حس عمیق زانو می‌تواند حس عمیق را در وضعیت مفصل زانو بهبود یابد. این اثبات می‌تواند در تعیین وضعیت مفصل زانو مفید باشد.

تشکر و تشکر با همه اعضای گروه مطالعه و همکاران مسئول این مطالعه.

در نهایت، با توجه به نتایج این مطالعه، کسب و کار بیشتری در این زمینه که شامل مطالعات کاربردی، آزمایشات عملیاتی و تحقیقات پژوهشی باشد کنید.

واژگان کلیدی: لیگامان متقاطع قدامی، مفصل زانو، حس عمیق، وضعیت با تحمیل وزن

تاریخ پذیرش مقاله: ۱۳۸۵/۹/۱۴

نویسندگه مسئول: دانشیار دانشکده توانبخشی دانشگاه علوم پزشکی تهران

Hadian_ras@yahoo.com
مقدمه:
در سال‌های اخیر، نسبت به ارزیابی و درمان حس عمیق توجه به شیئی‌هایی از آسیب‌پذیری وگریزی اثبات شده است. این مسئله احتمالاً افزایش میزان شیوع ضایعات ورژنی با خصوصیت ضایعات لیگاماتی تأثیرگذار است. لیگاماتی (ACL) و همچنین افزایش حساسیت اجتماعی اقتصادی نسبت به این گونه ضایعات به باشند. بیماری‌های حس عمیق از مفاصل باعث افزایش آگاهی کرک‌کرک می‌شود. مطالعه‌های قبلی از این مفاهیمی شود. سیستم اعصاب کلی با برده‌ی میکروکلینیک‌ها حس عمیق، سیستم عضلانی اسکلتی و عمل نظیر ایجاد ثبات دینامیک به صورت کارآمدی وارد عمل می‌کند.

گیرنده‌های میکانیکی از جمله کلی این سیستم مفاهیمی بیش از آن‌ها نشان داده که حلقه اوران فیدک حس عمیق را آغاز می‌کند. این گیرنده‌ها ها نقش مهمی در تأمین حس وضعیت مفصل همچنین کنترل عمومی عضلانی و پاسخ‌های زلفکسی را دارند (۲).

نتیجه‌گیری‌ها نشان دادند که دارد و به خصوصیات طبیعت فاکتور پاسخی از اهمیت ویژه‌ای برخوردار است. اخیراً به نقش حس عمیق این لیگاماتی بعد از آسیب توجه زیادی شده است. گیرنده‌های میکانیکی این لیگاماتی به تغییر شکل بافت حساس مثبت و سیستم‌های را برای تغییر جهت و سرعت حرکت به سیستم اعصاب کلی این سیستم‌های با توجه به این مهتم می‌باشد. لیگاماتی می‌تواند باعث اختلال در داده‌های آوران شود (۱۳-۲۳).}

آوران شود (۱۳-۲۳).

آوران شود (۱۳-۲۳). توصیف فاکتور پاسخی از اهمیت ویژه‌ای برخوردار است. اخیراً به نقش حس عمیق این لیگاماتی بعد از آسیب توجه زیادی شده است. گیرنده‌های میکانیکی این لیگاماتی به تغییر شکل بافت حساس مثبت و سیستم‌های را برای تغییر جهت و سرعت حرکت به سیستم اعصاب کلی این سیستم‌های با توجه به این مهتم می‌باشد. لیگاماتی می‌تواند باعث اختلال در داده‌های آوران شود (۱۳-۲۳).

آوران شود (۱۳-۲۳). توصیف فاکتور پاسخی از اهمیت ویژه‌ای برخوردار است. اخیراً به نقش حس عمیق این لیگاماتی بعد از آسیب توجه زیادی شده است. گیرنده‌های میکانیکی این لیگاماتی به تغییر شکل بافت حساس مثبت و سیستم‌های را برای تغییر جهت و سرعت حرکت به سیستم اعصاب کلی این سیستم‌های با توجه به این مهتم می‌باشد. لیگاماتی می‌تواند باعث اختلال در داده‌های آوران شود (۱۳-۲۳).
آماری اطلاعات
تمام اطلاعات جمع آوری شده با استفاده از نرم‌افزار Kolmogorov-Smirnov SPSS (Ver11.5) برای تعيین نرمال بودن توزیع داده‌ها استفاده شد. معنی‌دار بودن آماری با P<0.05 توسط G-Test در نظر گرفته شد.

پیش‌درآمدها
با کمک مقیار راپید تست شده (راپید) تست: از مقیار راپید به‌پژوهشگر کننده در هر تکرار تست راپید، میزان خطای مطلق بدون دارا بودن علامت ± محاسبه شد.

برای بررسی اختلاف میانگین خطای مطلق، بین دو وضعیت به ویژه دو FLX و 2.5 to EXT از ویژه مطالعه و زانوی سالم بیماران و زانوی غلاف افراد سالم از آزمون Wilcoxon Signed Ranks Test استفاده شد.

همچنین برای بررسی اختلاف میانگین خطای مطلق بین دو زانوی عمل شده و زانوی سالم بیماران در هر FLX و وضعیت (to EXT) و 2.5 to FLX وضعیت (to EXT) و 2.5 to FLX و 2.5 to EXT استفاده شد.

برای بررسی اختلاف میانگین خطای مطلق بین زانوی عمل شده و زانوی سالم بیماران با زانوی افزایش ویژه، سالم در وضعیت اول و دوم از آزمون Mann- Whitney Signed Ranks Test استفاده شد.

برای بررسی ارتباط زمان بین آسیب و چراغ با میانگین خطای مطلق زانوی عمل شده و عمل شده بیماران از ضیف همبستگی پیرسون (Pearson product moment correlation) استفاده شد.

برای بررسی تاثیر تکرارهای تست هر راپید repeated (3 تکرار) بر میانگین خطای مطلق از ANOVA و وضعیت) استفاده شد.

جلوی یا عقب حرکت دهه (جهت کنترل سیستم وستبیولار و کنترل زوناپلری اطراف مفاصل اندام تحتانی) در مورد حرکتی که در آزمون semi squat وضعیت از دو دست دست کننده سیستم به دو دست دست کننده (تقسیب 10 درجه در هر دست) با این وضعیت استفاده شد. به دو دست دست کننده (تقسیب 10 درجه در هر دست) با این وضعیت استفاده شد. به دو دست دست کننده (تقسیب 10 درجه در هر دست) با این وضعیت استفاده شد. به دو دست دست کننده (تقسیب 10 درجه در هر دست) با این وضعیت استفاده شد. به دو دست دست کننده (تقسیب 10 درجه در هر دست) با این وضعیت استفاده شد.

کننده، در راه تحقیق 20 درجه به فرد دست دست توقف حرکت دهه، سیستم به فرد خواسته شد که در این وضعیت قرار بگیرد و این موقعیت را به خاطر بسپارد. از این موقعیت توسعه ویرای دوپین دیجیتال Canon MV750 860 Pixel

حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان دو دست دست کننده. دوربین بایو فاصله 15 سانتیمتری از زانو و 65 سانتیمتری از سطح زمین قرار گرفته شد. سپس از آن خواسته شد در وضعیت اکستنسیون صفر درجه حرکت شیب و پس از 2 ثانیه استراحت مجدد از وضعیت به زانوی تست شده را با پژوهشگر کننده و انتخاب نامه. با اعلام حرکت، از زانوی به‌پژوهشگر کننده نیز عکس حرکتیشان دو دست دست کننده. حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان دو دست دست کننده. دوربین بایو فاصله 15 سانتیمتری از زانو و 65 سانتیمتری از سطح زمین قرار گرفته شد. سپس از آن خواسته شد در وضعیت اکستنسیون صفر درجه حرکت شیب و پس از 2 ثانیه استراحت مجدد از وضعیت به زانوی تست شده را با پژوهشگر کننده و انتخاب نامه. با اعلام حرکت، از زانوی به‌پژوهشگر کننده نیز عکس حرکتیشان دو دست دست کننده. حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان دو دست دست کننده. دوربین بایو فاصله 15 سانتیمتری از زانو و 65 سانتیمتری از سطح زمین قرار گرفته شد. سپس از آن خواسته شد در وضعیت اکستنسیون صفر درجه حرکت شیب و پس از 2 ثانیه استراحت مجدد از وضعیت به زانوی تست شده را با پژوهشگر کننده و انتخاب نامه. با اعلام حرکت، از زانوی به‌پژوهشگر کننده نیز عکس حرکتیشان دو دست دست کننده. حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان دو دست دست کننده. دوربین بایو فاصله 15 سانتیمتری از زانو و 65 سانتیمتری از سطح زمین قرار گرفته شد. سپس از آن خواسته شد در وضعیت اکستنسیون صفر درجه حرکت شیب و پس از 2 ثانیه استراحت مجدد از وضعیت به زانوی تست شده را با پژوهشگر کننده و انتخاب نامه. با اعلام حرکت، از زانوی به‌پژوهشگر کننده نیز عکس حرکتیشان دو دست دست کننده. حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان دو دست دست کننده. دوربین بایو فاصله 15 سانتیمتری از زانو و 65 سانتیمتری از سطح زمین قرار گرفته شد. سپس از آن خواسته شد در وضعیت اکستنسیون صفر درجه حرکت شیب و پس از 2 ثانیه استراحت مجدد از وضعیت به زانوی تست شده را با پژوهشگر کننده و انتخاب نامه. با اعلام حرکت، از زانوی به‌پژوهشگر کننده نیز عکس حرکتیشان دو دست دست کننده. حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان دو دست دست کننده. دوربین بایو فاصله 15 سانتیمتری از زانو و 65 سانتیمتری از سطح زمین قرار گرفته شد. سپس از آن خواسته شد در وضعیت اکستنسیون صفر درجه حرکت شیب و پس از 2 ثانیه استراحت مجدد از وضعیت به زانوی تست شده را با پژوهشگر کننده و انتخاب نامه. با اعلام حرکت، از زانوی به‌پژوهشگر کننده نیز عکس حرکتیشان دو دست دست کننده. حرکت راپید نیو سی پاها تازه به شده عکس حرکتیشان.D. دانشگاه علوم پزشکی تهران دوره ۱، شماره ۱، ۱۳۸۶، ۶۱
نتایج:

آمار توصیفی مربوط به دو گروه بیمار و کنترل در جدول ۱ ارورد شده است. با انتخاب آزمون Kolmogorov-Smirnov در ارتباط با داده‌های سن، قد و وزن در دو گروه و زمان بین آسیب و جراحی در بیماران، با p<0.05 توزیع این متغیرها نرمال بود. متغیر‌های سن، قد و وزن بین دو گروه اختلاف معنی‌دار نداشتند. در تمرین بیماران شرکت کننده ACL در این مطالعه از تاندون پاتیا بای ارزاسی استفاده شده بود. میانگین(انحراف معیار) زمان بین آسیب و جراحی (P>0.05) در گروه کنترل در دو وضعیت to FLX و to EXT جدول ۲ شان داده است.

آزمون Wilcoxon و خطا مطلق در زانونی عمل شده و زانونی سالم بیماران و همچنین در زانونی غالب افراد سالم، اختلاف معنی‌داری از نظر میانگین خطا مطلق وجود نداشت (p>0.05). اختلاف معنی‌داری بین زانونی عمل شده و عمل نشده بیماران در هر وضعیت (toFLX و toEXT) و با Mann-Whitney آزمون نشان داد میانگین خطا مطلق به کمی از زانونی، بالای افراد سالم در فضای مشترک (p<0.05).

بحث و نتیجه: کیری JPS و همکاران (1996) در ارزیابی مفصل زانو، از طریق پانسیون های پانسیونت (somatosensory evoked potential) در سه گروه افراد با ضایعه ACL و افراد سالم، مطالعه کردند که عصب‌دهی مجدد در ارتباط منفی قفل شده (ها). به‌طور عمده کلینیکه‌های کلینیک، ACL تشکیل‌دهنده و نرم‌شدن عضلانی بعد از بارزاسی ACL و نرم‌شدن عضلانی باید از جراحی را نیز ملکه مات شده سپری از ژاپنی یا نیز Feremery توانبخشی نوین - دانشگاه آزاد اسلامی - دانشگاه علوم پزشکی تهران دوره ۱، شماره ۱، ۱۳۸۶.
شرکت کرده بودند. افراد این مطالعه، آترفی عضلاتی و تورم مفصلی داشتند. همچنین حین تست‌های JPS وجود دارد که توسط ACL سایر گیرنده‌های مکانیکی در عضلات، تاندونها و سایر گیرنده‌های مفصلی سالم، به اندامی کافی جبران شده است. همچنین احتمال اینکه عصب گیری مجدد در خود لیگامان توانسته باشد نقص JPS مفصل زانو را جبران نماید، وجود داشته است.

شکل 1: تصویر شماتیک اندوکس کریپت زاویه مفصل با سیستم مشتمل از فتوکرایتری دیجیتال مارک‌های خیر پرور و "AutoCAD" نوربین عمومی بر صفحه حركتی زانو بهبودی.
قدیرانی و تشکر
این طرح با همکاری فیزیوتراپیست سید محمود طباعی و با استفاده از بودجه اختصاصی دانشگاه علوم پزشکی تهران انجام پذیرفت. نویسندگان لازم می‌دانند که از همکاری ایشان و همچنین حمایت مالی دانشگاه علوم پزشکی تهران تشرک نماید.
References:


12. Lephart Sm, Kocher Ms, Fu Fh. proprioception following anterior cruciate ligament reconstruction. J Sport Rehabil, 1992; 1: 188-196


