بررسی ویژگی‌های طیف فرکانس سیگنال الکترومیوگرافی در طول‌های مختلف
عضله ابداکتور پولیسیس برویس درد دار از انقباض ایزومتریک و دینامیک

دکتر غلامرضا عليایی¹، دکتر محمدرضا هادیان²، دکتر حسین باقری³، دکتر سعید طالبیان⁴، محسن عابدی⁵

¹ استاد دانشکده توانبخشی، دانشگاه علوم پزشکی تهران
² دانشیار دانشکده توانبخشی، دانشگاه علوم پزشکی تهران
³ کارشناس ارشد فیزیوتراپی

چکیده
زمینه و هدف: این پژوهش با هدف بررسی و مقایسه اثر انقباضات طیف فرکانس سیگنال الکترومیوگرافی و خصوصیات اعضا بر اثر خستگی عضلاتی پروری طیف فرکانس آست.

روش بررسی: در ۲۰ نفر از افراد سالم بین سنین ۲۰ تا ۳۲ سال اختیاری شدند. در این تحقیق هر فرد در جمع‌بندی ۲ دقیقه انقباض ایزومتریک ۶ دقیقه انقباض دینامیک سرعتی ۶ دقیقه انقباض دینامیک با فشار انقباض میدان ۵ دقیقه به کمک دستگاه فرکانس درجه دوم و ۵ دقیقه به کمک دستگاه فرکانس درجه دوم انقباض.

می‌گویم: بین هر دو زمان انقباضات دستگاه فرکانس می‌شود. این تحقیق از روش‌های انقباضات و تاثیر آن‌ها بر اثر خستگی عضلاتی پروری طیف فرکانس آست.

هدف اصلی: با استفاده از آزمون‌هایی مشخص کردن که با کاهش طول عضله فرکانس میانی و میانگین افزايش می‌یابد

ایتامیت: (P<0.05) همچنین تست خستگی سپس کاهش شاخص‌های فرکانسی می‌شود که این کاهش در اختلال ایزومتریک تندر انقباض دینامیک بود و پیش‌گیری کاهش مربوط به انقباض دینامیک با فشار بود. میزان انحراف فرکانس به لحاظ

علیه مربوط به طول کوتاه عضله بود که البته انقباض میان‌تراتی میان‌تراتی را نسبت به طول‌های دیگر نشان نمی‌داد

نتیجه‌گیری: بطور کلی این تحقیق بیانکر رابطه بین طول عضله و خصوصیات اعضا بر تغییرات طیف فرکانس است.

واژگان کلیدی: سیگنال الکترومیوگرافی، خصوصیات، طیف فرکانس، انقباضات ایزومتریک، انقباضات دینامیک

تاریخ پذیرش مقاله: آبان ۱۳۸۵

نویسنده مسئول: استاد گروه آموزشی فیزیوتراپی دانشکده توانبخشی دانشگاه علوم پزشکی تهران

olyaeigh@sina.tums.ac.ir
کشته دانمارکی جهت ثبت امواج الکترومغناطیسی در مراحل مختلف آزمایش الکترومغناطیسی که بخصوص دو الکترومغنازه (فعال و غیرفعال) بوده و قطع آنها در حدود یک سانتی متر بود. ضمن فاصله آنها از هم در حدود ۳ سانتی متر بود -زل بای برقراری ارتباط بین الکترونها و پوست اسپیلنتی که متفاوت به وجود آمد در دادن دست و انگشت در وضعیتی مورد نظر است. جهت ثبت نگه داشتن نگه داشتن در وضعیتی مختلف - قرن برای انگام آزمایش در مرحله انقباض دینامیک مقاومت که دارای سطح مقطع نیم سانتیمترولوگی ۵ سانتیمتری بود - نرم افزار کامپیوتری با عنوان LABVIEW سیگنال الکترومغناطیسی به پردازشگر حوزه فرکانسی دستگاه کامپیوتری مدل گرگار ۴۸۶/PC به ثبت و ذخیره امواج الکترومغناطیسی در مراحل مختلف ودرنواختن براد اسپیلنتا صفحه مدل VERSION ۲–SOB/۸۳۰. ۲– روش انگام آزمایش وجمع اوری داده‌ها آزمایش در دو جلسه جداگانه با احکام یک روز فاصله زمانی بین انگام‌ها کرد. جلسه اول ابتدای شخصا به نحوی انگام کار آشنا شده و الکترومغناطیسی دستگاهی رود دست نصب گردید. الکترومغنازه فعال روی بالک عضله والکترومغنازه غیر فعال حدود ۳ سانتی متر قرار گرفته. الکترومغنازه زمین در بالای ساعده نصب شد. بعد از اندازه‌گیری فشار دست، دستگاه در حالیکه، محل آرنج تا ۹۰ درجه خم شده و پوشیده سطح صاف دست صندلی مخصوص قرار گرفته و در مراحل مختلف آزمایش باین نگه داشتن عملیه در وضعیتی مورد نظر از سنبلینه‌های قبلا آماده شده بود. استفاده گردید. پس از این مراحل، دستگاه الکترومغناطیسی روشان و جهت خوش نگه داشتن ژیرنخیز گردید:

 broaden: ۴۰ms/div
 gain: ۲mv/div

اتصالات بین دستگاه الکترومغناطیسی وکامپیوتر نیز توسط سیستم رابط بروکار گردیده و دستگاه کامپیوتر پس از روشن شدن روی برنامه مقدمه

خستگی عضلانی به شکل‌های متغیری تعریف می‌شود. به‌طور مشهور آن عبارت است از

اینکه: خستگی عضلانی کاهش در حداکثر ظرفیت تولید نیرو توسط عضله است که در اثر ورزش یا

فعالیت‌های بدنی رخ می‌دهد. (۱)

از علایم همراه با خستگی می‌توان به گرفتگی عضلات، سفتی و درد اشاره کرد. خستگی عضلانی ممکن است به‌طور کلی طرفی تولید نیرو کاهش سرعت هدایت عضله و کاهش سرعت انقباض وانشانی شدن منابعی همراه است. (۲)

یکی از مباحث مهم که به شناخت مکانیزم پیچیده خستگی ووابط آن با سایر عوامل که می‌کند، انجام یک روش منظور وکی جهت ارزیابی واندازه‌گیری خستگی است. تاکنون از روش‌های متغیری برای این کار استفاده شده است که هرکدام محاسبه و معاون خودر آندردانه (۲۰۰۲ و ۵).

اچ‌آئین بستگی از روش که تحلیل طیف فرکانسی برای کاربردهای تحقیقی و انسینی از خستگی عضلانی مرسوم شده است که در پژوهش حاضر به همیش مقرره خواهد پرداخت.

روش بررسی

۱- متغیرها و جمعیت‌نمونه

در این مطالعه متغیرهای مستقل شامل:

\(\text{پیچیده ایزومتریک در طول‌های مختلف وهمچنین انقباضات دینامیک سرعتی و مقاومتی در طول‌های مختلف ومتغیرهای وابسته} \) شده از خستگی عضلانی و ویژگی‌های طیف فرکانسی (فرکانسی میانه و میانگین).

جمعیت نمونه مورد مطالعه شامل ۲۰ نفر از دانشجویان دانشکده نوین‌شناسی دانشگاه علوم پزشکی تهران بودند که همگی از سالمند کامل بروزدار بوده و داروی طبیعی در این تحقیق شرکت نکرده.

۲- سوالات و تجربیات مورد استفاده

دستگاه ثابت و مشخص الکترودیک

(الکترومغناطیسی) با نام DISA مدل ۱۴HOS ساخت
نقشه سرعت حرکت خود را با این تهیه می‌کرد. در انقباض دینامیک عادی و مقاومتی این سرعت یکسان بود و در انقباض سرعتی دو برابر بالاتر قابل می‌شد. برای انجام انقباض دینامیک‌های مختلف از یک فن‌جره اعمال مقدار در برقرار حکم استفاده می‌شد. پس از نوشت این انقباض کلیه اطلاعات وارد نرم‌افزار SPSS جریان تغییرات حرکت داده و شامل فکانس، داده و مقایسه انقباض‌های مختلفی در حال انجام با استفاده از دستگاه کامپیوتر.

شیت می‌شود فرد به دقت دوم انقباض خود ادامه داده و در دو طرفه‌های دوم به دقت دوم انقباض‌های مختلفی در حال انجام با استفاده از دستگاه کامپیوتر.

جلسه دوم: در مورد که در جلسه اول، آزمایشگاهی سطح انقباض ایزوترومیک استفاده می‌ساخت و در جلسه دوم انقباض‌های دینامیکی انجام می‌گرفت و باعث شد.

ب) نحوه انقباض آزمایش دینامیک در اینجا نیز پس از طی مراحل مقدماتی و انتخاب نوع انقباض دینامیکی و طول مورد نظر آزمایش شروع می‌شد. در انجام آزمایش مدت زمان انقباض دیسکی 6 دقیقه بوده‌گام فاصله 5 دقیقه استراحت بین آنها انجام می‌گرفت. در اینجا نیز در پیانو حرکت انقباض، به دقت دوم می‌گرفت. انقباض‌های دینامیکی می‌شد. برای مطمئن شدن از این‌ها بود این سرعت انجام انقباض از برنامه کامپیوتری تراکن (تغییر سطح) استفاده می‌گردد که در آن نقطه آی نورانی پر رطوبت مانند می‌تواند با سرعت ثابت حرکت کرده و فرد با تعقیب

توانبخشی نوین - دانشگاه حقوق و روانشناسی - دانشگاه علوم پزشکی تهران دوره 1، شماره 11386.
انجام آزمایش خستگی دیده می‌شود که در همه انقباضات با افزایش زاویه و با بی‌پردازیدن طول عضله افزایش می‌یابد. این کننده بیشترین انقباض مربوط به زاویه 90 درجه در انقباض دینامیک اعضا و کنترل آن مربوط به زاویه 30 درجه در انقباض ایزومتریک و دینامیک با فن است.

 مقایسه فرکانس میانه و میانگین قبل و بعد از تست خستگی شکل (3)

در شکل شماره چهار همین مقایسه برای قبل و بعد از انجام آزمایش خستگی در انقباض دینامیک عادی صورت می‌گیرد و است که در اینجا نیز فرکانس‌های میانه و میانگین کاهش معناداری را پس از انجام آزمایش خستگی نسبت به قبل از آن نشان می‌دهد. به‌طور کلی P = 0.003 و P = 0.04 درجه 90 و 45 درجه.

 مقایسه فرکانس میانه بعد از تست خستگی شکل (1)

بطابش شکل شماره دو، فرکانس‌های میانه و میانگین با کاهش طول عضله (قبل از انجام آزمایش خستگی) افزایش می‌یابند که در این میان افزایش فرکانس میانگین بیشتر از میانه است.

 مقایسه فرکانس میانه و میانگین قبل از خستگی شکل (2)

در شکل شماره سه مقایسه ای بین فرکانس‌های میانه و میانگین در طولهای مختلف عضله قبل و بعد از انجام انقباض ایزومتریک صورت می‌گیرد. است. در این شکل دیده می‌شود که در هر سه زاویه، فرکانس‌های میانه و میانگین پس از انجام آزمایش خستگی نسبت به قبل از آن کاهش یافته است که از لحاظ آماری این تفاوت معنادار است P = 0.001 و P = 0.02.

 مقایسه فرکانس میانه و میانگین قبل از خستگی (4)

شکل بعدی مربوط به مقایسه فرکانس‌های میانه و میانگین در طولهای مختلف عضله قبل و بعد از انجام انقباض دینامیک سرعتی است. در اینجا نیز فرکانس‌های میانه و میانگین پس از انجام تست خستگی

ucion: نوین دانشکده توانبخشی - دانشگاه علوم پزشکی تهران دوره 1، شماره 2، 1369
کاهش معناداری را نسبت به قبل از آن نشان می‌دهد و برای برای زوایای 45 و 90 درجه.

برای بررسی اثر نوع انقباض ایزوومتریک

میزان و دینامیک عادی بر انصراف طیف فرکانس (خستگی)

مقایسه فرکانس میانه و میانگین قبل و بعد از نست خستگی (در انقباض دینامیک) شکل (6)

مقایسه فرکانس میانه و میانگین قبل و بعد از نست خستگی (در انقباض دینامیک) شکل (5)

و سرانجام در شکل شماره شش همین

مقایسه در انقباض دینامیک مقاومتی صورت گرفته که

در نتیجه در اینجا نیز فرکانس‌ها پس از انقباض آزمایش خستگی نسبت به قبل از آن کاهش معناداری را

نشان می‌دهد و برای زوایای 35، 45، 60 و 90 درجه.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.

میزان و دینامیک استفاده در جداول شماره‌ها و دینامیک‌ها دانه‌زنی در طولهای مختلف عضله در انقباض دینامیک کاهش معناداری را

نسبت به انقباض ایزوومتریک نشان می‌دهد.
جدول (1) اثر نوع انقباض ایزومتریک و دینامیک عادی بر کاهش فرکانس

<table>
<thead>
<tr>
<th>P</th>
<th>انقباض ایزومتریک</th>
<th>انقباض دینامیک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>انحراف معیار</td>
<td>میانگین</td>
</tr>
<tr>
<td>0/000</td>
<td>5/5</td>
<td>10/0/5</td>
</tr>
<tr>
<td>0/000</td>
<td>8/17</td>
<td>15/19</td>
</tr>
<tr>
<td>0/000</td>
<td>10/50</td>
<td>5/95</td>
</tr>
</tbody>
</table>

درصد تغییرات فرکانس

- میانگین در زاویه 0 درجه
- میانگین در زاویه 45 درجه
- میانگین در زاویه 90 درجه

جدول (2) اثر نوع انقباض ایزومتریک و دینامیک عادی بر کاهش فرکانس

<table>
<thead>
<tr>
<th>P</th>
<th>انقباض ایزومتریک</th>
<th>انقباض دینامیک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>انحراف معیار</td>
<td>میانگین</td>
</tr>
<tr>
<td>0/000</td>
<td>6/15</td>
<td>14/83</td>
</tr>
<tr>
<td>0/000</td>
<td>16/20</td>
<td>35/19</td>
</tr>
<tr>
<td>0/000</td>
<td>10/50</td>
<td>5/95</td>
</tr>
</tbody>
</table>

درصد تغییرات

- فرکانس میانه در زاویه 0 درجه
- فرکانس میانه در زاویه 45 درجه
- فرکانس میانه در زاویه 90 درجه

بطری کلی از مجموع یافته‌های بالا نتایج زیر بدست آید:

1- قبل از انجماد و فرکانس‌های میانه و میانگین واقعی در رابطه بر عکس می‌باشد. یعنی چه طول کاهش سرعت، فرکانس باشد، کاهش می‌شود.

2- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه‌های مختلف تفاوت بی‌حال شده است.

بطری کلی از مجموع یافته‌های بالا نتایج زیر بدست آید:

3- در انقباض دینامیک نیز فرکانس‌های میانه و میانگین پس از انجماد کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه از نظر زاویه، در انتهای زاویه، نسبت به قبل از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

4- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

5- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

6- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

7- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

8- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

9- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

10- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

11- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

12- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

13- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.

14- در انقباض ایزومتریک، فرکانس‌های میانه و میانگین پس از انجماد و فرکانس‌های میانه و میانگین شمایی در طول زاویه، نشان می‌دهد.

به نظر می‌رسد که این نتایج برای فرکانس‌های کاهش می‌شود. یعنی به این معنی که انقباض دینامیک با فرکانس کاهش و استabilیت در طول زاویه، نشان می‌دهد.
نتیجه گیری
کاهش فرکانس سیگنال الکترومیتریکی که در این تحقیق ماهیان شد، مطابق با تحقیقاتی است که قبل از این زمینه انجام شده است (17، 23).

همچنین افزایش درصد تغییرات انحراف فرکانس در طولهای کوتاهتر که در مطالعات قبلی (6) دیده شده بود، در این تحقیق نیز اثبات شد. در اینجا احتمال این درصد انحراف فرکانس در طولهای کوتاه و بلند متغیر بود که با توجه به تعداد کنترل افراد شرکت کننده در این تحقیق نسبت با داد. در مورد اثر طول عضله بر شاخص‌های فرکانسی نیز بافت‌های این تحقیق با تحقیقات دیگر مشابه است (10، 19).

مثلاً در اینجا نیز دیده شد که قبل از انجام آزمایش خستگی کاهش فرکانس در طول عضله، فرکانس که برای نمایش و چند میزان کاهش در این تحقیق در حدود 8 درصد بود در حالیکه در تحقیق دیگری (9) این میزان 18 درصد گزارش شده است که این تفاوت مربوط به اختلاف نوع عضله و روش انجام آزمایش است.

در توضیح علی کاهش فرکانس که با افزایش در طول عضله رخ دهد مطالعه پیش‌گیری بیان شده است (11، 19) و تحقیق عضله‌ای که به شیرکه می‌گوید، مقدار کاهش با افزایش قطع عضله مستقیماً روی سرعت هایی فیبر عضلانی اثر می‌گذارد، به طوریکه افزایش قطر سبیلی (10) در سرعت زیاد شد. رابطه بین سرعت و طبق فرکانس نیز با مدل‌های ریاضی و مطالعات تجزیه‌شناخت داده‌بندی است (16، 19، 21، 23). با بازیابی یکی از علی عضله کاهش فرکانس (یمانگین و ویمان) که با افزایش طول عضله رخ می‌دهد این است که وقتی عضله طولی می‌شود سرعت هایی فیبر عضلانی کم شده و منجر به کاهش فرکانس می‌گردد. علاوه بر اثر قطع عضله، قطع عضله روی سرعت هایی می‌گردد. افزایش می‌کند مانند خارج سلولی است. افزایش در طول عضله.
یک مورد گزارش شده است که خستگی عضلانی در طولهای بلند بیشتر از طولهای کوتاه دیده شده است (۱۶). که علت آن را هم افزایش ایسکمی عضله در طولهای بلند ذکر کرده‌اند. بنابراین برای شناخت بهتر این پدیده نیاز به تحقیقات و مطالعات بیشتر و کاملاً است.

تشکر و این گردانی:
این طرح با استفاده از بودجه اختصاصی دانشگاه علوم پزشکی تهران انجام پذیرفت. نویسندگان لازم می‌دانند که از دانشگاه علوم پزشکی تهران برای حمایت مالی از این طرح تحقیقاتی تشکر نمایند.
References:

