بررسی ویژگی‌های طیف فرکانس سیگنال الکترومیوگرافی در طولهای مختلف
عضله ابداکتور پولیسیس برویس درد و نوع انقباض ایزومتریک و دینامیک

دکتر غلامرضا علیایی۱، دکتر محمد رضا هادیان۲، دکتر حسین باقری۳، دکتر سعید طالبیان۴، محسن عابدی۵

۱استاد دانشکده توانبخشی، دانشگاه علوم پزشکی تهران
۲دانشیار دانشکده توانبخشی، دانشگاه علوم پزشکی تهران
۳کارشناس ارشد فیزیوتراپی

چکیده
زمینه و هدف: این پژوهش با هدف بررسی و مقایسه اثر طولهای مختلف عضله ابداکتور پولیسیس برویس (Abd.Pol.Bre) بر روی تغییرات طیف فرکانس سیگنال الکترومیوگرافی و خصوصیات پوست عضلانی و همچنین بررسی اثر خستگی عضلانی بر روی طیف فرکانس آست. روش بررسی: در 20 نفر از افراد سالم بین سنین 20 تا 40 سال انجام شد. در این تحقیق هر فرد در مجموع 3 دقیقه انقباض ایزومتریک 6 دقیقه انقباض دینامیک میان 6 دقیقه انقباض دینامیک به فقری انجام می‌داد که هر کدام از انقباض‌ها در سه طول کوتاه متوسط و بلند (با عبارتی زوایای ۶۰، ۱۲۰ و ۱۸۰درجه) انجام می‌شد. بین هر کدام از رمدمان انقباضی مدت 5 دقیقه زمان استراحت در نظر گرفته بود. درک قابلیت انقباضی تغییر توانبخشی عضله توسط دستگاه ثبت شده و در نهایت طیف فرکانس آن مورد بررسی قرار می‌گرفت.

یافته‌ها: با استفاده از آزمون آماری میانگین دو گروه که با کاهش طول عضله فرکانس میانگین و میانگین افزایش می‌یابد (P<0/001). همچنین تست خستگی سبب کاهش مشخصه‌های فرکانسی می‌شود که این کاهش در انقباض ایزومتریک کنتر از انقباض دینامیک بود و بیشترین کاهش مربوط به انقباض دینامیک یا فنر بود. بیشترین میزان انحراف فرکانس به لحاظ عدید مربوط به طول کوتاه عضله بود که این اثر به انقباضوی اختلال مغزی-هورمونی و تغییرات در طول عضله و خصوصیات پوستی عضلانی با تغییرات طیف فرکانس است. واژگان کلیدی: سیگنال الکترومیوگرافی، خصوصیات پوستی عضلانی، طیف فرکانس، انقباض ایزومتریک، انقباض دینامیک

تاریخ پذیرش مقاله: آبان 1385
تاریخ وصول مقاله: شهریور 1385
نویسنده مسئول: استاد گروه آموزشی فیزیوتراپی دانشکده توانبخشی دانشگاه علوم پزشکی تهران
olyaeigh@sina.tums.ac.ir
مقدمه
خستگی عضلانی به شکل‌های مختلفی تعریف شده است. یکی از تعاریف مشهور آن عبارت است از اینکه: خستگی عضلانی کاهش در حداقل طرفه تولید نیرو توسط عضله است که در اثر ورزش یا فعالیت‌های دنبی رخ می‌دهد (۱).

از علایم مهمی که به شناخت مکانیزم پیچیده خستگی وابسته آن به سایر عوامل کمی که ایجاد بک‌روش ممکن و کمیجه آزمایش، واندازه‌گیری خستگی است. تاکنون از روش‌های متعددی برای این کار استفاده شده است که هر کدام محسن ویژه‌ای خودارگذارند (۲، ۳ و ۴).

بخش اسکنده از روش تجزیه و تحلیل طیف فرکانسی برای کاربردهای تحقیقاتی و بالینی در خستگی عضلانی مرسوم شده است که در پژوهش‌های حاضر به همین مقوله خواهد پرداخت.

روش بررسی
۱- متغیرها و جمعیت نمونه
در این مطالعه متغیرهای مستقل شامل: انقباض ایزومتریک در طول‌های مختلف و همچنین انقباضه‌های دیپ‌سورتی و مقاومتی در طول‌های مختلف و متغیرهای وابسته تشکیل شده از خستگی موضوعی عضلانی و ویژگی‌های طیف فرکانس (فرکانس میانه و میانگین).

جمعیت نمونه مورد مطالعه شامل ۲۰ نفر از دانشجویان دانشکده توانبخشی دانشگاه علوم پزشکی تهران بودند که همگی از سلامت کامل برخوردار بوده و بطور داوطلبانه در این تحقیق شرکت کرده‌اند.

۲- واکنش و تجربیات مورد استفاده
دستگاه ثیدیت و تشخیص الکتریکی (الکترومیوگرافی) با نام DISA مدل ۱۴HOS ساخت توانبخشی نوین-دانشگاه توانبخشی-دانشگاه علوم پزشکی تهران دوره ۱، شماره ۱، ۱۳۸۹.
نقطه سرعت حركت خود را به‌کاننده می‌کند. در انتقال دینامیک عادی و مقاومتی این سرعت پیکان بود و در انتقال سرعتی دو برای حالت قبلی می‌شد. برای انتقال دینامیک مقاومتی زیادی که در این فرآیند داشت. انتخاب نوع انتقال و طول‌های مختلف عضله به شیوه تحقیقی و با قید قرعه‌بود.

الف) نحوه انجام آزمایش در انتقال ایزومتریک و زاویه صفر درجه

ابتدا انگشت شست فرد از تاحیه مفصل با M.P استفاده از استرگ بروی استلبن مربوط به دویزه صفر درجه ثابت نگه داشته شد. فرد انگشت خود رادر جهت ابتدای سیون ۱ تا ۲ دقیقه می‌کرد، و سپس به انتهای اینقطع دکتر کرده و سپس همین کار در یک زاویه دیگر تکرار می‌شد.

جلسه دوم: در نظر گرفتن در جلسه اول، آزمایش‌های مربوط به انتقال ایزومتریک انجام شده باشد در جلسه دوم انتقال‌های دینامیک انجام می‌گردد و بالعکس.

ب) نحوه انجام آزمایش دینامیک

در اینجا جای پس از طی مراحل مقدماتی و انتخاب نوع انتقال دینامیک، وظایف سبز نظر آزمایش شروع می‌شود. سپس انجام هر کدام از انواع انتقال‌های دینامیک ۴ دقیقه بوده و با فاصله ۵ دقیقه استراحت بین آنها انجام می‌گردد. در اینجا نیز در پایان هر انتقال کرده، به مدت ۵ ثانیه می‌پیماید، از نظر گرفتن درجات می‌گردد، در نهایت در انتقال ایزومتریک ثبت می‌شود. مطمئن شدن از آن‌ها بودن سرعت انجام انتقال، از برای کامپیوتر تراک (تقییت کتابی) استفاده کرده که به آن نقطه ای نورانی روى صفحه مانند با سرعت ثابت حرکت کرده و فرد با تعقیب
انجام آزمایش خستگی دیده می‌شود که در همه انقباضات با افزایش زاویه و با یکبار کوتاه شدن طول عضله، فرکانس میانه افزایش پیدا می‌کند که بیشترین افزایش مربوط به زاویه 90 درجه در انقباض دینامیکی عادی و کمترین آن مربوط به زاویه 30 درجه در انقباض ایزومتریک و دینامیکی با فن است.

مقایسه فرکانس میانه بعد از تست خستگی شکل (۳)

در شکل شماره چهار همین مقایسه برای 50 و بعد از انجام آزمایش خستگی در انقباض دینامیک (زاویه 45 درجه) نشان می‌دهد که از میانگین کاهش می‌یابد که در اینجا نیز فرکانس میانه کاهش پیدا می‌کند.

مقایسه فرکانس میانه بعد از تست خستگی شکل (۴)

مطلق شکل شماره دو، فرکانس‌های میانه و میانگین با کاهش طول عضله (قبل از انجام آزمایش خستگی) افزایش می‌یابند که در این میان افزایش فرکانس میانگین بیشتر از میانه است.

مقایسه فرکانس میانه و میانگین قبل و بعد از خستگی شکل (۵)

در شکل شماره سه مقایسه ای بین فرکانس‌های میانه و میانگین در طولهای مختلف عضله قبل و بعد از انقباض ایزومتریک صورت گرفته است. در این شکل دیده می‌شود که در هر سه زاویه، فرکانس‌های میانه و میانگین پس از انجام آزمایش خستگی نسبت به قبل از آن کاهش یافته است که از لحاظ آماری این تفاوت معنادار است (P=0.003 و P=0.004 و P=0.001) در تعدادی از جملات و عبارات، مقدار P=0.000 نیز مشاهده می‌شود که این مقدار نمایانگر آماری از چشمگیری است.
کاهش معناداری را نسبت به قبل از آن نشان می‌دهد.

برای بررسی اثر دو نوع انقباض الیزومتریک
و دیناپیک عادی بر انصراف طیف فرکانس (خستگی)

توجهی نوین دانشگاه توانبخشی دانشگاه علوم پزشکی تهران دوره 1، شماره 1، 1386.
جدول (1) آزمون انقباض ایزومتريك و دینامیک عادی بر کاهش فرکانس

<table>
<thead>
<tr>
<th>P</th>
<th>انقباض دینامیک</th>
<th>انقباض ایزومتريك الموتی</th>
<th>انقباض ایزومتريك میانکین</th>
<th>انقباض ایزومتريك میانکین</th>
<th>انقباض ایزومتريك میانکین</th>
<th>انقباض ایزومتريك میانکین</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>8/21</td>
<td>10/67</td>
<td>22/10</td>
<td>32/10</td>
<td>42/10</td>
<td>52/10</td>
</tr>
<tr>
<td>0.000</td>
<td>10/21</td>
<td>8/77</td>
<td>22/10</td>
<td>32/10</td>
<td>42/10</td>
<td>52/10</td>
</tr>
<tr>
<td>0.000</td>
<td>12/21</td>
<td>9/29</td>
<td>22/10</td>
<td>32/10</td>
<td>42/10</td>
<td>52/10</td>
</tr>
</tbody>
</table>

جدول (2) آزمون انقباض ایزومتريك و دینامیک عادی بر کاهش فرکانس

<table>
<thead>
<tr>
<th>P</th>
<th>انقباض دینامیک</th>
<th>انقباض ایزومتريك الموتی</th>
<th>انقباض ایزومتريك میانکین</th>
<th>انقباض ایزومتريک میانکین</th>
<th>انقباض ایزومتريک میانکین</th>
<th>انقباض ایزومتريک میانکین</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>6/15</td>
<td>14/38</td>
<td>22/56</td>
<td>32/56</td>
<td>42/56</td>
<td>52/56</td>
</tr>
<tr>
<td>0.000</td>
<td>8/20</td>
<td>16/59</td>
<td>22/56</td>
<td>32/56</td>
<td>42/56</td>
<td>52/56</td>
</tr>
<tr>
<td>0.000</td>
<td>10/20</td>
<td>18/59</td>
<td>22/56</td>
<td>32/56</td>
<td>42/56</td>
<td>52/56</td>
</tr>
</tbody>
</table>

بطوری که از مجموع باقی‌مانده بالا نتایج زیر بدست آید:

1- قبل از انجام آزمایش خستگی، رابطه میانگین برای ذخیره و فرکانس‌های میانکین وجود دارد. این رابطه بر عکس می‌باشد. معنی‌های چه طول کاهش باید، فرکانس به‌یک می‌شود.

2- در انقباض ایزومتريک، فرکانس‌های میانکین و میانکین پس از انجام آزمایش خستگی کاهش معناداری را نسبت به قبل از آن در هر سه زاویه نشان داده است.

3- کمترین میزان فرکانس‌های میانکین و میانکین مربوط به انقباض دینامیک با فنر است.

4- در انقباض ایزومتريک درصد تغییرات شاخصهای فرکانسی در طول های مختلف تفاوت معناداری را نشان نمی‌دهد.

5- با تغییر وزن کردن اختلاف مقادیر فرکانسی مشخص گردیده درصد تغییرات فرکانس در انقباض ایزومتريک در تمام زاویه‌ها بیشتر از انقباض دینامیک عادی است.
نتیجه گیری

کاهش فرکانس سیگنال الکترومغیفیکی که در این تحقیق ماده شد، مطابق با تحقیقاتی است که قبل از این زمانی انجام شده است (7،8،9).

همچنین افزایش درصد تغییرات انحراف فرکانس در طولهای کوتاهتر که در مطالعات قبلی (6) دیده شده بود، از این تحقیق نیز اثبات شده. چنین در اینجا اختلاف بین درصد انحراف فرکانس در طولهای کوتاه و بلند متغیر نبود که این را می توان به تعداد کمتر افزایش کندنه در این تحقیق نسبت داد. در مورد اثر طول عضله بر شاخص‌های فرکانس تیز‌بایه‌ای این تحقیقات با تحقیقات دیگر مشابه است (10،9).

مثلا از اینجا نتیجه می‌گیریم که افزایش طول عضله در انجام بیماری‌های خستگی و سرعت هدایت سیگنال الکترومغیفیکی را کاهش می‌دهد. چنان‌که این کسته در طولهای کوتاهتر بهتر است.

در مورد سیگنال چهاردهم‌متری اثر آن روی تغییرات طیف فرکانس ناچیز است. در مورد چهاردهم‌متری ثابت تجمع هیودوروزن و اسید لیکتیک بر سرعت هدایت و عضله‌ی می توان گفت که افزایش این مواد سبب اسید شدن محيط گشته و این حالت باعث کاهش تحريك پذيري غشاء عضله شده و سرعت هدایت را کم می‌کند. همچنین با اسید شدن محيط و کاهش تحريك پذيري غشاء، ژامون مواد پتانسیل عمل واحد حرکتی آوازیش یافته و سبب کاهش سرعت هدایت فیبر عضله و کاهش فرکانس می‌گردد (15،16).

در پایان نکته درکی این نتیجه ضروری است که از آنجا که خستگی عضله‌ی پیدا بسیار پیچیده ای بوده و هنوز جوان ناشنادی به پیش‌بینی بوده‌ی دارنداز رابطه‌ی آن با طول عضله نیز هنوز بطور کامل شناخته شده نیست و در این مورد نظرات متفاوتی بین شده است. مثلا در سبب افزایش این مقاومت و کاهش سرعت هدایت فیبر عضله و در نتیجه کاهش فرکانس می‌گردد (11). سومین عامل که بر سرعت هدایت فیبر عضله مؤثر می‌باشد این است که با افزایش طول عضله، زمان پتانسیل عمل فیبر عضلانی (MFAP) دچار تغییرات شدیده‌ای فرکانس که در حین تغییرات طول عضله رخ می‌دهد مربوط به سرعت هدایت فیبر عضلانی است (12).

نتکه مهم بعدی در مورد علت کاهش فرکانس در حین خستگی عضله است. وقتیکه عضله‌ی خسته می‌شود این حال حین به تجمیع اسید لیکتیک و پوست هیدروژن در ناحیه شید می‌گردد. اگر این مواد در محل باقی ماندند و دفع نگرند، می‌تواند سبب کاهش سرعت هدایت فیبر عضله و در نتیجه کاهش فرکانس شود (16). در انتقال‌های معکوس، که بر قدرت کم انجام می‌گردد (مثل انتقالات زیر حضور ماؤزیسم) چربی خون عضله بهتر از انقباضات حاد درک است. با حرکت وجود یک چربی خون ملطوب سبب دفع سرعت مواد زاید از عضله و رفع خستگی می‌گردد و با حرکت اثر آن روی تغییرات طیف فرکانس ناچیز است. در مورد چهاردهم‌متری ثابت تجمع هیودوروزن و اسید لیکتیک بر سرعت هدایت و عضله‌ی می توان گفت که افزایش این مواد سبب اسید شدن محيط گشته و این حالت باعث کاهش تحريك پذيري غشاء عضله شده و سرعت هدایت را کم می‌کند. همچنین با اسید شدن محيط و کاهش تحريك پذيري غشاء، ژامون مواد پتانسیل عمل واحد حرکتی آوازیش یافته و سبب کاهش سرعت هدایت فیبر عضله و کاهش فرکانس می‌گردد (15،16).
یک مورد گزارش شده است که خستگی عضلانی در طول‌های بلند بیشتر از طول‌های کوتاه دیده شده است
(۱۶) که علت آن را هم افزایش ابزاری عضله در طول‌های بلند نکرد. بنابراین برای شناخت بهتر این پدیده نیاز به تحقیقات و مطالعات بیشتر و کاملاً است.
تشکر و قدردانی:
این طرح با استفاده از بودجه اختصاصی دانشگاه علوم پزشکی تهران انجام پذیرفت. نویسنده لازم می‌داند که از دانشگاه علوم پزشکی تهران برای حمایت مالی از این طرح تحقیقاتی تشكر نامیده.

توانبخشی نوین - دانشگاه توانبخشی - دانشگاه علوم پزشکی تهران دوره ۱، شماره ۱۳۸۶
References:


