بررسی پایایی و دقت اندازه‌گیری زاویه در محيط آزمایشگاه و مقایسه آن با آنالیزدستی در کلینیک با استفاده از یک سیستم جديد

دکتر محمدرضای هادیان، دکتر نسرین ناصری، دکتر حسین باقری، دکتر سعید طالبانی، دکتر غلامرضا يبالی، شهره جلالی بیانگردان دانشگاه علوم پزشکی تهران
استادیار دانشگاه علوم پزشکی تهران

در حالیکه ۴ عدد مارک مرتب بر روی انداز تحتا نهان چسبانده شده بود، با دوربین دیجیتال عکس گرفته شد. زاویای تصاریف موجود با آنالیز دستی از طریق صفحات شفاف و‌گوناگون‌شیر اندازه‌گیری شد. این اندازه‌گیری توسط آزمون‌گر اصلی با دو تکرار با فاصله زمانی ۱۰ روز و دو فیزیوتراپیست به صورت مستقل انجام شد.

بیانگردان چکیده:
زمینه و هدف: اندازه‌گیری زاویه مفصل در ارزیابی یکی از اجزای مهم حس پورپریوسپشنی یعنی حس وضعیت مفصل کاربرد دارد. هدف این مطالعه مقطعی بررسی پایایی و دقت اندازه‌گیری زاویه با استفاده از دو روش آنالیز دستی و آنالیزدستی با استفاده از AutoCAD بود.
روش بررسی: برای بررسی پایایی و دقت آنالیزدستی در محيط کلینیک، از ۷۲ زاویه مفصل زانوی راست ۴۴ فرد سالم، در حالیکه ۴ عدد مارک مرتب بر روی انداز تحتا نهان چسبانده شده بود، با دوربین دیجیتال عکس گرفته شد. زاویای تصاریف موجود با آنالیز دستی از طریق صفحات شفاف و‌گوناگون‌شیر اندازه‌گیری شد. این اندازه‌گیری توسط آزمون‌گر اصلی با دو تکرار با فاصله زمانی ۱۰ روز و دو فیزیوتراپیست به صورت مستقل انجام شد.

نتیجه‌گیری: بررسی همبستگی (r)، در آنالیز دستی تمام زاویا، بین تست کلیده، میانگین یک بود. [۱.۲] در پایایی از نوع ICC با ارزش ۰/۹۹/۰ بود. همچنین اختلاف معنی‌دار میان میان اندوزه‌گیری‌های دو فیزیوتراپیست، دو بار اندازه‌گیری آزمون‌گر اصلی و هر فیزیوتراپیست وجود نداشت. در بررسی ارتقای آنالیز دستی با AutoCAD آنالیز دستی برای هر زاویه ۱ بود. اختلاف میانگین دو روش بیشتر از ۸/۰ درجه بود. پیشنهادات اجرای این پروتکل آنالیزدستی برای زاویه مفصل زانو و دقت کافی پایان داد. این روش ها از طریق مارک‌گذاری و فتوگرافی دیجیتال در ارزیابی حس وضعیت مفصل زانو می‌توانند به کار گرفته شوند.
نویسنده مسئول: دا نشیار گروه آموزشی فیزیوتراپی دانشکده توانبخشی دانشگاه علوم پزشکی تهران

hadianrs@sina.tums.ac.ir
مقدمه

در ارزیابی‌های فیزیوتراپی و ارتودوکس، یکی از ابزارهای مهم برای تعیین میزان پیشرفته بیمار، بررسی میزان تأثیر تکنیک‌های درمانی مختلف و همچنین تصمیم‌گیری در دومدازبان‌سازی زاویه‌ای، اندازه‌گیری Zاوای مفصل می‌باشد (1).

علاوه بر این، اندازه‌گیری Zاوای مفصل در ارزیابی‌یکی از ابزارهای محسوس پورپوروسپیشن به‌عنوان Position Sense: JPS) Joint Sense (KS) جلوگیری کاربرد نازک (7.8, 9.10, 11, 12, 13, 14, 15, 16) برای اندازه‌گیری اجزای آگاهی حس پورپوروسپیشن شامل حس وضعیت مفصل (JPS)، حس حرکت (Kinesthesia)، حس حرکت (JPS) و حس مقامات و نیرو (tension) را از روشهای منطقی استفاده می‌شود (5, 7).

در ارزیابی JPS در مفصل زانو، Zاوای تست و Zاوای پارازازی شده معمولاً در دو وضعیت زنگیره باز (نشسته) و زنگیره بسته (به‌ستاده) و به‌صورت اکثریت یا با پاساژ‌سازی‌های کوچک می‌شود (10, 11, 12, 13, 14, 15, 16). غالباً برای این اندازه‌گیری از Sوایال و روشهای مانند: گوینیاتر لکتریکی (16), دیتابزرتر دیزونیکی (17, 18, 19). آلانی اتوماتیک کامپیوتری از تصاویر ویدئویی به‌صورت دو بعدی (20). سیستم آلانیز کی‌ام‌ئی (20). پاسخ‌های به‌ینالی برای Pارازازی‌ای زاویه سخت شده (مثلاً در یک گوینیاتر مدل‌فصلی باینفکس) (20). تركیب روش ویدئوگرافی و گوینیاتری (20) و فوتورگرافی و گوینیاتری (20) استفاده می‌شود. گوینیاتر لکتریکی است اکثریت تمایل مؤثر به خصوص در مفصل ران و می‌توان با توجه به استفاده نیست. همچنین این استفاده وجود دارد که فیزیکایی اوران Zاوای مفصل ناشی از عدم تطابق محرک گوینیاتر و محرک حرکت مفصل (1) و فعالیت غیرنرمال پورپوروسپیشن‌ها ناشی از فشارهای اعمال شده از طرف نواحی و

همچنین این استفاده وجود دارد که فیزیکایی اوران Zاوای مفصل ناشی از عدم تطابق محرک گوینیاتر و محرک حرکت مفصل (1) و فعالیت غیرنرمال پورپوروسپیشن‌ها ناشی از فشارهای اعمال شده از طرف نواحی و

با ناحیه ثابت کننده، نتایج ارزیابی را تحت تأثیر قرار

دهد.

یکی دیگر از موارد محدودیت این وسیله، فقعد پاپایلی نتایج بین چند آزمون‌کار باشند، همچنین در صورتی که تغییرات زاویه کنترل از 10 درجه باید این مسئله نتایج مطلوب را با استفاده از گوینیاتر لکتریکی به

اعتبار می‌کنند (27).

اظهار کردن که استفاده از

گوینیاتر لکتریکی می‌تواند به کامپیوتر برای اندوزه‌گیری وضعیت‌های فصلی در فعالیت‌های محرک با تحقق وزن، نسبت به گوینیاتر معمولی، پاپایلی کنترلی ارد و استفاده از آن می‌تواند عامل برای ایجاد حركات غیرنرمال باشد (28). در استفاده از دیتابزرتر ایزوکینتیک، مسئله مهم وجود فیزیک‌های اوران غیرنرمال ناشی از Sوایال ثابت کننده اندام و عدم امکان (weightbearing) در ارزیابی JPS در وضعیت فاستکنال (29) می‌باشد. Sوایال تست افزایش وزن، می‌تواند کاربردی تر می‌باشد بلکه در آنها تمامی گردن‌های حس پورپوروسپیشن (در پوست، مفاصل و عضلات) تحریک می‌شود. این دو حالت هم‌اکنون وضعیت است که در طی آن فعالیت‌های روزمره انجام می‌شود (30, 31).

در روش آنالیز کامپیوتری تصاویر ویدئویی، تعیین زاوای تست و Pارازازی شده با کمک آنالیز تصاویر ویدئویی گرفته شده با یک دوربین و با اندازه‌گیری دو بعدی اوتوماتیک، صورت یگری می‌باشد. برای تشخیص این امر، از مارک‌های منعکس کننده نور معمولی یا مادون قرمز که در قسمت خارجی اندام قرار داده می‌شود استفاده می‌گردد (30, 31، 32). اندازه‌گیری گردن زاویه با این روش همزمان با حرکت یک دوربین با پشتیبانی از دوربین و دو زاویه با دو حالت (31). در مطالعات از این نوع از Sوایال مختلف‌نظر دوربین‌های با سرعت بالا (32) و سیستم‌های تصویر که تروموگماتیک (35). گوینیاتر
روش (۴۵) Haggard و Wing و Scholz

۱۶ مارکر مربعی، با ضلع ۴ سانتی‌متر، هر ۲ عدد بصورت عمودی در هر کشوره یک نقطه در ابعاد ۸۰۰×۸۰۰ سانتی‌متر بیان شده بود. جهت کالیبراسیون سیستم چسبانده شد. یک عدد گونیامتر پلاستیکی استفاده شد با طول بزرگی ۱۸ سانتی‌متر و تغییر اندازه ۲ درجه ای به صورتی به مرکز آن ۲ عدد مارکر مربعی ۴ سانتی‌متری چسبانده شده بود. در دو موقعیت (به ترتیب) از طریق پاژوه ثابت آن با چسب به تخته نصب شد در موقعیت A محرک گونیامتر ۱۵ سانتی‌متر از کناره فوکاپ و ۳۷ سانتی‌متر از کناره سمت راست تخته فاصله داشت و پاژوه ثابت به صورت افقی قرار داده شد. در موقعیت B محرک گونیامتر با فاصله ۲۷/۵ سانتی‌متر از کناره فوکاپ و ۶۰ سانتی‌متر از کناره سمت چسبانده شد، نقاط ثابت و پاژوه ثابت با ۴۰ درجه نسبت به خط افقی، قرار داده شد (شکل ۱).

شکل ۱ - دو موقعیت گونیامتر بر روی تخته کالیبراسیون

دوربین فیلم پرداری دیجیتال (Canon MV750i) با رزولوشن ۸ مگا‌پیکسل در فاصله ۲ متری از تخته و ۶۵ سانتی‌متری از سطح زمین به صورتی که لنز آن کاملاً در اطراف مرکز تخته باشد، بر روی سه پایه تراز شد. زاویای در دامنه ۱۸۰ تا ۱۸۰ درجه، با ۲۰ درجه افراز (۹ زاویه) بعنوان زاویای مرجع انتخاب شدند.

الکتریکی (۴۶) و شتاب سنج (۷۷) استفاده می‌شود اما
از دوربین‌های همراه با سرعت بالا همراه با مارکرهای
معکوس کننده کروی که بر روی ادامه کاشته می شود
پیش‌گیری اصلی در کار با دوربین‌های با سرعت بالا، صرف وقت زیاد جهت آنالیز
تصاویر ویدئویی می‌باشد (۹). استفاده از پاسخ‌های
بینایی (visual analogue responses) و دقت کافی می‌باشد (۸۸).

مطالعات مربوط به اندام‌های گیری زاویه با استفاده از
ترکیب فوتودیجیتال و فوتودوگرافی همراه با گونیامتری،
با استفاده از مارکرگاری (۴۷،۴۸-۷۸) یافته شده که
مارکرهای پوستی JPS براپرتیب (۷۹) از دوربین‌های محدود می‌باشند. مارکرهای پوستی،
محصولاتی در انتهام حرفه ای‌ها قلم رنگ، همچنین به
راحتی و خیلی آسان مورد استفاده قرار می‌گیرند
(۸۰-۳۱). بررسی‌های گونیامتریک برای اندام‌های گیری
زاویه با استفاده از فیلم های ویدئویی وقت کافی دارد
(۳۲). از ترکیب روش فوتودیجیتال و گونیامتری در
مطالعات استفاده شده است (۳۲،۳۴) اما تهیه محصول
عصر دیجیتال هزینه بی و وقت کری است. در مطالعه اندام
زاویه با استفاده از گونیامتر و دیجیتال و گونیامتری بر
روی تصاویر پرینت شده، برای ارزیابی
فصل زانو استفاده شد (۴۲).

اگرچه ارزیابی گیری زاویه با یک دو روش
آسان و عیان است اما دقت و پایایی آنها کاملاً مشخص
نیست. هدف این مطالعه که در دو بخش طراحی شد
بررسی مسالی زیر بود:

پایایی و دقت اندام‌های گیری زاویه با استفاده
از آنالیز با AutoCAD و محیط آزمایشگاه
پایایی و دقت اندام‌های گیری زاویه مفصل
زاویه با استفاده از آنالیز دستی در محیط کلنیک
روش بررسی

در بخش اول برای بررسی پایایی و دقت
اندازه‌گیری زاویه با اینالیز با
AutoCAD و مشابه روش Linden (۴۵) که خود مشابه
تنویخی نوین، دانشگاه توانبخشی-دانشگاه علوم پزشکی تهران دوره ۱، شماره ۱۸۸۳۶۶، ۱۳۸۶.
از هر فرد در خواصش Š۳۰۰۲ زاویه زا و سایر وی از وضعيت استراحت زانو تا استکاسونی کنن دو زاویه را به دنده و تصادف با حرکت دانش‌الساق پای ابزار کنن و با اعلام هر موقعیت. چنین ثانیه‌ای آن را برای تهیه عکس نگه دارد. بعد از ثانیه عکس از تمامی افراد (۲۰ عکس). زاویا با روش دستی اندوتنی جربی شد به این صورت که با گذاشته شده شفاف بر روی صفحه کامپیوتر کوه‌هادی هر مربع با مانندی براکبیک به صفحه نتیجه‌ای شد. سپس صفحه شفاف بر روی سطح صافی گذاشته شد و با کشیدن قطره‌ها مرتع. مرکز هر مربع مشخص گردید. راهکنن در مارک و دو مارک ران به یکدیگر یخ و زاویه مربع تخت آنها با یک گنوشتر پلاستیکی پنترسال خوانده تخت گردید. زاویا. دوبار توسط محکم‌العصبی به‌کامل یک دو تلویزیون آموزش دیده به صورت مستقل، اندوتنی‌گری شد. علاوه بر ۲۰ زاویه مفصل زانو جهت مقایسه، با نرم افزار AutoCAD هم اندوتنی جربی شد (شکل 2) تا مجموع خط‌های مرطوب به آتالیز دستی شماره: الف - خط‌های مرطوب به لغزش صفحه شفاف بر روی صفحه کامپیوتر، ب - خط‌های مرطوب به رسم قطره‌های مرتع. ج - خط‌های مرطوب به رسم خطوطی که از مرکز هر دو مرتع دقیق و د - خط‌های مرطوب به قرار دانش‌الساق. در مرکز تکرار دو خط و خوانده آن تندیش نشود. AutoCAD در اندوتنی جربی زاویا با انتباه احتیاطی به پیداکردن گروه‌های مرکز در صفحه کامپیوتر بود. استفاده از مرکزهای مرتعی به جای دایره‌ای از این نظر بود که این احتیاط وجود داشته که در هر دو روش آتالیز دستی و آتالیز پیدا کردن مرکز دایره با خط‌های بین‌تری صورت گرفت. کلیه مراحل انجام این تحقیق توسط کمیته اختلاصی دانشگاه علوم پزشکی تهران مورد تایید قرار گرفت.

در حالتی که پازی ثابت محکم نصب شده بود، بازوی محورک بمار در‌روخ‌زا و حرکت داده شد و از هر وضعیت ۲ عکس گرفته شد. سپس زاویای موجود با نرم افزار AutoCAD اندوتنی جربی شد.

در جهت مصرف در که از افراد از این آنها در انگیزه قرار داده شد. سپس تک‌کنن برکنار مایلی سه‌وازی که قسمت میانی خط مفصل خارجی زانو وصل شد. مرکز اول در ۴/۵ فویل این خط، مارک دوم در گردن فیویا و مارک سوم در قسمت داخلی مارک‌ها مانند خارجی چسبانده شد. سپس فرد در لبه نخست استیل و در وضعیت که زانو تقریباً ۹۰ درجه خم بود، مارک چهارم در قسمت فوقیی پیوسته آل آن در محافزات لبه فوقیی پایل قسمت چسبانده شد. انتخاب محل مارک‌ها براساس مطالعات Cappozzo و Hemarkian (۶۴)، Lafortune و Tully و Stillman (۷۸) و Lamoreux (۷۹) اتجام شد. دوره‌نامه در همان فواصل قابلی، عموم بر صفحه حسکی زانو تراز شد.
Pearson product-moment correlations
برای تعیین ارتباط دو روش آنالیز دستی و آنالیز با AutoCAD و روش مقایسه این دو روش محاسبه شد.

یافته‌ها
در بخش اول در بررسی پایاپایی و دقت انداده‌گیری زاویه با آنالیز با برای ICC AutoCAD، آنالیز با برای پرداخته شده که آنالیز با در محاسبه زاویا با تغییر موقعیت گویی‌بندی بر روی چندین کسان عمل می‌کند. میانگین و انحراف معیار ۳ بار اندازه‌گیری در هر زاویه و در موقعیت گویی‌بندی جدول ۱ و میزان اختلاف زاویای مرجع و میانگین زاویای انداده‌گیری شده در دو موقعیت A و B در شکل ۲ شناخته شده است.

جدول ۱- میانگین (انحراف معیار) در ۳ بر انداده‌گیری AutoCAD (به درجه) برای هر زاویه مرجع در دو موقعیت A و B

<table>
<thead>
<tr>
<th>موقعیت</th>
<th>موضع</th>
<th>A (درجه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹/۶۸</td>
<td>۱۹/۶۸</td>
<td>۲۰</td>
</tr>
<tr>
<td>۳۸/۷۸</td>
<td>۳۸/۷۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۷۹/۷۸</td>
<td>۷۹/۷۸</td>
<td>۸۰</td>
</tr>
<tr>
<td>۹۹/۸۰</td>
<td>۹۹/۸۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۱۱۹/۳۳</td>
<td>۱۱۹/۳۳</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>۱۴۰/۴۰</td>
<td>۱۴۰/۴۰</td>
<td>۱۴۰</td>
</tr>
<tr>
<td>۱۶۰/۶۰</td>
<td>۱۶۰/۶۰</td>
<td>۱۶۰</td>
</tr>
<tr>
<td>۱۸۰/۷۸</td>
<td>۱۸۰/۷۸</td>
<td>۱۸۰</td>
</tr>
</tbody>
</table>

در موقعیت A در زاویه ۱۴۰ درجه، انداده‌گیری بدون خطای بود. بیشترین خطای در حد ۱۰ درجه در زاویای ۶۰ و ۱۸۰ درجه بود و فقط در زاویه ۱۰۰ درجه با اختلاف ۲۵ درجه زاویه بیشتر محاسبه شده بود.

تنام اطلاعات جمع آوری شده با استفاده از برنامه آماری SPSS(Ver 11.5) از آمارهای پارسیونه بر مبنای محاسبه میانگین ها و انحراف معیار و استفاده داشته می‌باشد. میانگین دار بودن آماری با P<0/۰۵ تست‌های نظر جفت‌شده. در بخش اول بررسی پایاپایی و دقت انداده‌گیری زاویه با آنالیز با برای intraclass correlations coefficient:ICC تعیین پایاپایی روش انداده‌گیری در هر موقعیت گویی‌بندی و زاویه محاسبه شده. دقت انداده‌گیری گیری، این میزان پارامترهای انحراف معیار از میانگین در ۳ بار فوتورگافی تعیین شده. همچنین مطالعات گرفته شده با استفاده از میانگین ۳ تکرار اندازه‌گیری و زاویای مرجع برای هر ۲ موقعیت A و B گویی‌بندی محاسبه شد.

در بخش دوم پایاپایی و دقت انداده‌گیری Pearson product-moment correlation coefficient (r) زاویه با آنالیز دستی از برای تعیین ارتباط میان آنالیز دستی انداده‌گیری اول محاسبه اصلی، اندازه‌گیری دوم محاسبه اصلی، اندازه‌گیری فیزیوتراپیست اول و فیزیوتراپیست دوم به کلی و همچنین به تفکیک جنس استفاده شده. از [۲.۱] ICC (۲) دستی بین ۲ تکرار دستی و در تکرار دستی زاویای توسط محاسبه اصلی paired t-test و زاویه بیشتر محاسبه شده. همچنین
در موقعیت B کمترین خطا در زاویه ۱۴۰° و بیشترین آن در ۳۰° درجه مربوط به زاویه ۱۸۰ درجه بود (جدول ۱- شکل ۳).
پراکنده روش اندازه گیری که با انحراف معیار از میانگین ۳ تکرار اندازه گیری در دو موقعیت B و A تعیین شد در جدول ۱ و شکل ۳ نشان داده شده است.

![شکل ۳- پراکنده اندازه گیری از میانگین (۳ تکرار اندازه گیری) در جدول ۱ و شکل ۳ نشان داده شده است.](image)

پراکنده از میانگین در هر زاویه در موقعیت B از ۰.۵ درجه تا ۲.۵ درجه مربوط به بزرگترین زاویای B و ۶ درجه متغیر بود اما در موقعیت B هدلین بالا و حداکثر پراکنده ۰.۰۶ درجه تا ۷.۵ درجه بود (به ترتیب بزرگترین زاویای ۸۰ و ۲۲۰ درجه بود (جدول ۱- شکل ۳).)

![شکل ۴- اختلاف زاویه مرجع و میانگین زاویای اندازه گیری (به ترتیب) در هر زاویه مرجع در دو موقعیت B و A مربوط به بزرگترین زاویای ۸۰ و ۲۲۰ درجه بود (جدول ۱- شکل ۴).](image)
دوربین تغییر می کند اهمیت دارد. در اختلاف میانگین زوایای انتزاع گیره شده توسط AutoCAD و زاویه مرجع (جدول 1-شکل 2)، بی جز در هر دو موضعیت که زاویه کمی پیشرفت محاسبه شده بود (25/0+ درجه و زاویه مرجع 140 درجه) از ین نظر وجود داشت که برای موارد، زاوایی محاسبه شده کمی کاهش از زاویه مرجع بود.

حداقل این اختلاف 3/70 درجه در زاویه 180 درجه در موقعیت B و سپس در زاوایی 60 درجه در موقعیت A، هر دو با اختلاف 3/70 درجه بود.

در هر دو موقعیت و برای تمامی زاوایا، دامنه اختلاف بین 22/70 تا 3/70 درجه بود. به نظر عامل اصلی برای این اختلاف ها، رفتارکن نور توسط مارکرهای و خطای بین کردن کوپرها هر مارکر می باشد. این اختلاف از اختلافی که در آنالیز کامپیوتری زوايا توسط مارکرهای کروی معکس کننده (با سیستم آنتیز و Linden حرفکی) در مطالعه و همکاران و Scholz و همکاران (در آنتنگاه شد کمتر بود. پراکندگی از میانگین در اندازه کیفی هر زاویه بطور کلی در موقعیت A کمتر از موقعیت B بود (2/0- درجه در موقعیت A و 2/0 درجه در موقعیت B از آنجاکا فاصله دوربین، تنظیمات آن و میزان دور در بار فوتورگرافی متولی ثابت بود. وجود این پراکندگی میتواند به تغییر بارور ثابت گویند. افزایش شدت رفتارکن نور توسط مارکرهای و خطای در پیداکردن دقيق هر کوپر از مارکر مربوط باشد.

(P=0/001). در آنالیز دستی زاویه دوم نیز همین وضعیت وجود داشت اما در آنالیز دستی زاویه سوم، در هر دو موارد 2ی به دست آمد (P=0/001).

با تحلیل جنس، در آنالیز دستی زاویه اول مردان و زنان در هر دو موارد 2= بود (P=0/001). در آنالیز دستی زاویه دوم و سوم در زنان، در هر دو موارد 2= بود (P=0/001). اما در مورد مردان این وضعیت در هر دو موارد وجود نداشت. ضریب همبستگی در آنالیز دستی در مردان کمتر از 0999/0 بود (P=0/001).

آنتنگاه دستی بین محقق اصلی ICC[2/1] و در هر دو PT2 و PT1 و فاصله اطمینان 95% برای زاویه اول (1999/0 و درجه راهه زاویه دوم (1999/0 و درجه و برای زاویه سوم (1999/0 درجه بود.

با حملات ادامه و تغییر، بین دو روش آنتنگاه دستی و آنتنگاه با AutoCAD در هر دو زاویه اختلاف معنی دار وجود داشت (P<0/0).

بحث

هدف مطالعه حاکی از این پایبندی و دقت انتزاع گیره زاویه استفاده از دو روش آنتنگاه دستی AutoCAD و آنتنگاه با برای هر دور محوریت B و A در آنتنگاه با AutoCAD و شکل دسته تکه کالیبراسیون بدون درنظر گرفتن موقعیت گویند مورد ثابت عمل کرده است. پایین انتزاع گیره در کلینیک وقتی که موقعیت اندام و مفصل در محدوده تصویر

تولیسی نوین ـ دانشکده توانبخشی ـ دانشگاه علوم پزشکی تهران دوره 1 شماره 1

1389
جدول 2- میانگین انحراف معیار و اشتباه معیار آنالیز دستی 3 زاویه ساخته شده در فصول زاویه افراز سالم در 2 تکرار اندازه گیری محقق

<table>
<thead>
<tr>
<th>اشتباه معیار</th>
<th>انحراف معیار</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه اول</td>
<td>0.45</td>
<td>0.275</td>
</tr>
<tr>
<td>زاویه دوم</td>
<td>0.35</td>
<td>0.200</td>
</tr>
<tr>
<td>زاویه سوم</td>
<td>0.40</td>
<td>0.250</td>
</tr>
</tbody>
</table>

PT_1^* = فیزیوتراپیست اول
PT_2^* = فیزیوتراپیست دوم

در بعضی از مطالعات از آنالیز دستی برای اندازه گیری زاویه مفصل استفاده شده است. این مدل که به کاشانی و گونیامی و یا نقاله لولایی بر روی صفحه تصویری و با نگهداری تصویر مورد نظر فیلم ویدئویی زاویه را اندازه گیرند. این روش به دلیل نگرش و سیله اندازه گیری بر روی صفحه، عدم تماس کامل و سیله بر روی صفحه در صورتی که مساحت نباشد و همچنین در پیدا کردن تقریبی مرکز هرمکارک و مرکزی که باید محور و سیله اندازه گیری بر روی آن کاشت‌شده شود، خطاً زیادی دارد. لذا اینکه روشهای دقیق و پایدار زیادی نخواهند داشت. اما روش پیشنهادی در این مطالعه که Stillman (32) نیز در مورد آن تحقیق کرد، از این نظر خطاً کمتری را موجب می‌شود.

ضریب همبستگی آنتیلز دستی در اندازه گیری زاویه مفصل زانو برای تست کنده ها/999/1 یک بود (P=0/001) در مردان علی رغم عدم وجود تعداد زنج در کافی بین پوست و مارکر و خطای بیشتری که در
Kadaha (4) Marks, Kurt (4) Smith (4) Selfe (4)

ارزیابی آنالیز گرمزاف زاویه و سرعتی این عمل است. همچنین به تغییر آزمونگی و برنامه‌های انقلابی در جلوگیری از انتقال بعضاً از خطاهای توسعه کامپیوتر وابسته نیست (آنچه که در سیستم‌های آنالیز حرکتی در اندامه‌گیری بعضاً از زاویاها ممکن است. برای از ۱۸۰ درجه در مفصل زانو رنگ می‌دهد) (۴۲). اگر در این روش به اندازه‌رسانی تضاد رنگ پوست و مارکر که‌کش یا پلکس نور، تنظیمات دقیقت دوربین کنترل جهریض ضعو به نحوی که همواره در صفحه عمود بر دوربین باقی بماند و دقت گویند پرمر توجه شود، خطای اندازه‌گیری در هر دو روش آنالیز کاشت می‌یابد.

AutoCAD دستی و آنالیز با قابلیت از به کارگیری از هر روش و سیستم در مطالعات کلینیکی و آزمایشگاه پایه دقت و پایایی آن را اثبات نمود. روش‌های معرفی شده در این مطالعه شامل آنالیز با AutoCAD و دستی دارای پایایی و دقت کافی در اندامه‌گیری زاویه بودند. این روش ها با استفاده از مارکر کدگذاری بدون ایجاد محدودیت در انجام حرکت مفصل و همچنین بدون

تشکر و قدردانی:

این طرح با استفاده از بودجه اختصاصی دانشگاه علوم پزشکی تهران انجام گرفت. نویسنده لازم می‌داند که از دانشگاه علوم پزشکی تهران برای حمایت مالی از این طرح تحقیقاتی تشکر نماید.
References:

43. Linden DWV, Carlson SJ, Hubbard RL. Reproducibility and accuracy of angle measurements obtained under static conditions with the motion analysis video system. Phys Ther 1992; 72:300-305.

